
J .  Fluid. Mech. (1988), vol. 193, p p .  475-497 

Printed in Great Britain 
475 

Spiral structures and spectra in two-dimensional 
turbulence 

By ANDREW D. GILBERT 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW, UK 

(Received 16 March 1987 and in revised form 26 Pu’ovember 1987) 

Saffman argues that in decaying two-dimensional turbulence approximate dis- 
continuities of vorticity will form, and the energy spectrum will fall off as k-4.  
Saffman assumes that these discontinuities are well separated; in this paper, we 
examine how accumulation points of such discontinuities may give an energy 
spectrum of between kO4 and k3. In  particular we examine the energy spectra of 
spiral structures which form round the coherent vortices that are observed in 
numerical simulations of decaying two-dimensional turbulence. If the filaments of 
the spiral are assumed to be passively advected, the instantaneous energy spectrum 
has a k-l1I3 range. Thus we come some way to reconciling the argument of Saffman 
and the energy spectrum predicted by models of quasi-equilibrium two- 
dimensional turbulence based on a cascade of enstrophy in Fourier space. 

1. Introduction 
Saffman (1971) argues that in decaying two-dimensional turbulence discontinuities 

in the vorticity field will form, since fluid elements with different values of 
(materially conserved) vorticity will be driven close together by the flow. These 
discontinuities will only be approximate, having a width S, which may be calculated 
by balancing diffusion and convection. Then the vorticity distribution along a line 
through the fluid will also possess approximate discontinuities, which Saffman 
assumes are separated by some average distance L. The Fourier transform of the 
vorticity distribution along such a line has a fall-off of k- l ,  for L-l 4 k 4 S-l, and the 
energy spectrum may be calculated, giving E ( k )  cc kP4 in this range. 

However, models of quasi-equilibrium two-dimensional turbulence which assume 
a local cascade of enstrophy in Fourier space (see, for example, Batchelor 1969; 
Kraichnan & Montgomery 1980) predict a kP3 energy spectrum in an inertial range, 
which stretches from the scale of the forcing to the scale of viscous dissipation. 
Although these cascade models apply to quasi-equilibrium turbulence, whereas 
Saffman’s argument is for decaying turbulence, there seems to be some conflict 
between the two predictions. Note that Saffman’s argument relies on the material 
conservation of vorticity, which includes conservation of enstrophy, but also of other 
invariants, Sun ds, n = 3, 4, . . . . In  this respect it is very different from the cascade 
models, which only conserve enstrophy and energy, discarding these further 
invariants. 

Numerical simulations of two-dimensional turbulence (McWilliams 1984 ; Kida 
1985; Brachet, Meneguzzi & Sulem 1986; Benzi, Patarnello & Santangelo 1987) 
suggest the following sequence of events in the process of decay. Initially vorticity 
gradients increase; separated sheets of high vorticity gradient form (Brachet et al. 
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1986; Kida 1985). Saffman’s arguments apply, and the energy spectrum is observed 
to be approximately k4. However as time proceeds, these sheets accumulate 
(Brachet et al. 1986 ; Kida 1985) and the energy spectrum becomes shallower. At later 
times coherent vortices emerge in the flow (McWilliams 1984; Benzi et al. 1987) and 
most of the vorticity is concentrated in a small fraction of the fluid. These vortices 
move in the velocity field that they induce ; occasionally two vortices will be driven 
sufficiently close that the stronger onc will assimilate the weaker one by a winding- 
up process (McWilliams 1984 ; Melander, Zabusky & McWilliams 1987 ; Dritschel 
1988). Coherent vortices are also seen in simulations of quasi-equilibrium two- 
dimensional turbulence (Herring & McWilliams 1985 ; Babiano et al. 1987 ; Legras, 
Santangelo & Benzi 1988). 

Numerical simulations have yet to give a decisive determination of inertial-range 
spectral exponents in decaying and quasi-equilibrium two-dimensional turbulence. 
Thc difficulty is in obtaining the necessary separation between the scale of the forcing 
(yuasi-equilibrium turbulence) or vortices (decaying turbulence), and the scale a t  
which enstrophy dissipation occurs (Herring et al. 1974). I n  recent high-resolution 
simulations (Legras et al. 1988) of quasi-equilibrium two-dimensional turbulence an 
energy spectrum of about k-3.5 has been observed a t  scales smaller than those of the 
coherent vortices. On the scales of the vortices, the spectrum shows a steep fall-off, 
which seems to arise from the statistical distribution of the sizes of vortices (Benzi 
et al. 1987). This may also account for the steep energy spectra observed by 
McWilliams (1984) in simulations of decaying flows with coherent vortices. 

In this paper we shall be concerned with the later stages of the decay process, in 
which we may think of the vorticity as concentrated into coherent vorticcs. If we 
take the simplest model (figure 1 a) ,  in which the coherent vortices are without small- 
scale structure, thcn the vorticity distribution along a line possesses separated 
discontinuities. The energy spectrum falls off as k4, by Saffman’s argument. If, 
however, we wish to account for the more complex interactions of vortices, indicated 
by numerical simulations, as well as possibly shallower spectra, we should incorporate 
more small-scale structure. H. K. Moffatt (personal communication) suggested that 
we should consider the vorticity as concentrated into coherent vortices with spiral 
structurcs (figure 1 b) ,  formed by the winding-up proccss. Now the distribution of 
vorticit’y along a line possesses accumulation points of discontinuities, on scales 
greater than 6. This is more singular than a number of well-separated discontinuities, 
and leads to a slower fall-off than k’ in the Fourier transform of this distribution 
(Moffatt 1984). In $2, we consider a simple model, the wind-up of a weak vortex 
patch by a strong vortex core. We assume that the vortex patch is sufficiently weak 
that it may be treated as being passively advected by the vortex core. This model, 
although idealized, is intended to capture a clear physical effect, namely the winding- 
up of variations of vorticity by differential rotation and the accumulation of 
discontinuities. The energy spectrum of a single spiral structure (henceforth 
abbreviated to ‘spiral ’) is calculated in $3,  and has a range with a spectral power law 
of between k4 and K 3 .  It is worth noting that a spectral power law in this range has 
been observed by Lesieur et al. (1988) in numerical simulations of the break-up of a 
mixing layer; this seems to be associated with the wind-up of vorticity variations 
about vortex cores. 

The way in which spiral struchres can modify the energy spectrum was discussed 
by Moffatt (1984) in the context of three-dimensional turbulence. This also appears 
to be a key to understanding Lundgren’s (1982) ‘strained spiral vortex model’ of 
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0 ‘0 

FIGURE 1. Two-dimensional turbulence as a collection of (a )  coherent vortices ( b )  coherent 
vortices with spirals. 

quasi-equilibrium three-dimensional turbulence. In 8 4, we examine models for 
decaying two-dimensional turbulence in which the vorticity is concentrated in 
vortices with spirals (figure 1 b ) .  We relate our calculations to some results concerning 
fractals, and briefly extend our view to a class of models employing self-similarity, 
filaments within filaments of the spiral, as might occur from several vortex collisions ; 
these too have an energy spectrum of between k-4 and k-3. 
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2. The wind-up of a weak vortex patch by a strong vortex 
We begin by applying the mcthods discussed in Moffatt (1984) to a simplc modcl. 

the wind-up of the semi-infinite vortex patch shown in figure 2(13). This 
unsophisticated model is developed here to illustratc our methods of calculation so 
as to ease our examination of more complicatcd modcls The vorticity, o. is unity 
inside the region 9 ( t ) ,  and is zero outsidc. I t  is physicaally reasonable to take a 
discontinuous distribution of vorticity. since large gradients of vorticity arc 
generated both in the formation of vortices and in the winding-up process. Wc treat 
the vorticity as a passive scalar advccted by the flow of a point vortex of strcngth 
2n2r, placed at 0. Let e be thc distance from the patch to the vortex and lct there 
be no viscous diffusion. v = 0. We use both polar coordinates (r.8) and Cartesian 
coordinates ( x ,  y). 

After some time t ,  the patch becomes filamented and wound round the vortex 
(figure 2 h ) .  A particle a t  (r", 0,) when t = 0, now lies at 

r ( t )  = r,,, (2.1) 

0( t )  = nrt/r;+0,, (2.2) 

e(t) = K r t p .  ( 2 . 3 )  

0 ( t )  = 7trt/?"2+n, (2.4) 

and so the boundary of the patch, a 9 ( t ) ,  is two spirals. 

for r 2 c, and a semicircle of radius e.  
Let us examine the distribution of vorticity. wl(x), along the line y = 0, which cuts 

through the vortex. Now w l ( x )  has discontinuities wherever %3(t) crosses thc line 
y = 0, that  is, a t  points kx , ,  given by 

x, = (Tt/n)$, (2.5) 

with 1 < n < n, = Tt/2.  The spacing between the discontinuities is given by 

Axn = Ix, -x , -~[  - (rt/n3)1, (2 .6)  

where we neglect constants of order unity here and from now on. The distribution of 
these discontinuities gives us information about the Fourier transform of vorticity 
along the line y = 0, 

We shall concentrate on the contributions to G,(k )  from the discontinuities in x > 0, 
to  avoid undue cancellation in this artificially symmetrical model. We shall also 
neglect the cont.ribution from the point vortex for the time being. Thus we have 

Kow consider the Fourier transform for different ranges of k (figure 313). 
( a )  When the wavelength l / k  is short compared with the width of the finest 

filaments, c 3 / r t ,  the Fourier transform resolves a series of separated discontinuities 
and we expect that Gl(k) - k-I .  Indeed, since kAx, 2 1 in this range. k G l ( k )  is. in 
practice, a sum of n, uncorrelated complex numbers of unit modulus. This can be 
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w = l  x 

FIGCRE 2. The configuration of a semi-infinite vortex patch (a )  initially, at t = 0,  
( b )  at a later time. 

thought of as a random walk on the complex plane, and the mean-square distance 
from the start of the walk is simply the number of steps, which gives 

(2.9) /hl(k)l - nik-1 = (r t /eZ)+k-' .  

This requires careful interpretation as a root-mean-square average over nearby 
values of k ,  since h1(k) is a rapidly fluctuating function of k .  
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Spiral range . 
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FIGURE 3 ( a ,  b ) .  For caption see facing page. 
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FIGURE 3. ( a )  Fourier transform, lhl(kj1, of the distribution of vorticity along y = 0 for the wind- 
up of a semi-infinite vortex patch. ( b )  Log-log plot of IC,(k)lz against k for E = 1 and I't = 1001, 
calculated from equation (2.8). There are a hundred divisions per decade of k .  (cj Log-log plot of 
the moving average of ( h j  over a fifth of a decade of Ic. 

( 6 )  For wavelengths l / k  between the width of the finest filaments, e 3 / r t ,  and the 
width of the widest filaments, (TI); ,  the Fourier transform only resolves those 
discontinuities spacod by more than about a wavelength, Ax, 2 1/k,  that  is, 
1 < n 5 n, = ( I lk2) : .  The dominant contribution to the Fourier transform is given by 

1 
I j l (k)  - - C ( -  I)" ePikz=. 

k s=l 

(2.10) 

This is effect,ively a sum of nk uncorrelated terms, yielding 

I&,(k)l - ni k-' = (rt)ek-d,  (2.11) 

which again is to be interpreted as an average behaviour. When n is in the range 
n, 5 n < n,, the quantity e-ikxn varies slowly with n (as kAx,  5 1) ; the terms tend to 
cancel because of the factor, ( -  l),. and their contribution to kIjl(k) is of order unity 
and so negligib1e.t We can picture these wavelengths as seeing an accumulation point 
of discontinuities. This is a worse singularity than simply a number of separated 
discontinuities and so leads to a slower fall-off of k-i in the Fourier transform. For 

t There is an error in Moffatt (1984) a t  this point. It is stated that the terms with k r ,  6 1 are 
negligible. However i t  is the spacing, Axn, between the disvontinuities that is important, not the 
distance, xn. 
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FIGURE 4(a, b ) .  For caption see facing page. 

brevity, let us coin the term ‘spiral range’ for a range of k such as this, in which a 
spiral accumuiation of discontinuities leads to a slow fall-off in the Fourier 
transform, h l ( k ) .  

( c )  On scales greater than the width of any filament, 1 /k  2 (I?):, the Fourier 
transform resolves none of the spiral structure and just sees a semi-infinite patch. 
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FIGURE 4. Configuration of a finite vortex patch for times t ,  with ( a )  0 5 Tt 5 6, 
( b )  €5 5 rt 5 R", ( c )  RS 5 rt. 

The terms epilCxn vary slowly with n, and the sum is of order unity, so that 

IGl(k)l - k- l .  (2.12) 

We have demonstrated that this simple model gives the Fourier transform shown 
schematically in figure 3 (a ) .  The spiral gives rise to the range with the k-g fall-off in 
G l ( k ) ,  and the presence of discontinuities gives two ranges with a k-l fall-off. This 
may be compared with the numerical results shown in figure 3 ( b ) ,  in which lGl(k)12 is 
calculated from (2.8) for E = 1 and rt = 1001. Figure 3 (c)  shows a moving average of 
figure 3(b); this smooths out the rapid variations of lGl(k)[* (figure 3b does not 
resolve all the fine structure here). There is a good agreement with the above 
calculations (up to constants of order one). Note that we have assumed that there is 
a good separation of scales ; we shall take this for granted in further calculations and 
diagrams. 

We now refine the above model to the case ofa  patch, 9 ( t ) ,  with smooth boundary 
and finite radius, R (figure 4a) .  We still treat the patch as a passive scalar without 
viscous diffusion but now we generalize the velocity field to 

.i. = 0, (2.13) 

8 = nr/rs .  (2.14) 

For a point vortex, s = 2 ;  however this generalization might be useful to include 
some average axisymmetric effect of the patch on the velocity field. The calculations 
are similar to those we have presented for the semi-infinite patch, and we shall omit 
uninteresting details. 

For short times, 0 5 t 5 es/I ' ,  before the patch becomes wound round the vortex 
(figure 4a), Saffman's (1971) argument applies, and thus 

(2.15) 
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FIGURE 5 ( u ,  b ) .  For caption see facing page. 
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with 1 < n < n, = r t / c s ,  and the Fourier transform of the vorticity distribution 
along x = 0 is given by 

(2.18) 

R, O5k5 1/R 
1/R 5 k 5 (I't)-lls 

, (rt)-l/S 5 k 5 rt /es+l 
rt /es+l 5 k. ( rt /eS)i  k-l, 
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FIGURE 5 .  (a )  Fourier transform, [&,(k)l, of the distribution of vorticity along y = 0 for the wind- 
up of a finite patch, a t  times with Tt 2 R". ( b )  Log-log plot of IC,(k)lz against k for n, = 1001, 
nR = 100, Tt = 1001 and s = 2 ,  calculated from equation (2.19). There are a hundred divisions 
per decade of k .  (e) Log-log plot of the moving average of (b)  over a fifth of a decade of k .  

For times t with eS 5 T t  5 Rs, the vortex has wound the closest part ofthe patch 
into a spiral, but this filamentation process has yet to affect the far edge of the patch 
(figure 4 b ) .  We again have discontinuities in w l ( x )  at points x,, where a 9 ( t )  crosses 
y = 0. The detailed distribution of these points depends on the initial shape of the 
patch; however to calculate &,(k) we need only know the rate of accumulation of 
these discontinuities. We assume that initially the boundary of the patch, a9(0),  is 
smooth, and does not possess structure on scales smaller than R. Then any small piece 
of the boundary will be stretched into a spiral round the vortex and so will 
accumulate a t  a rate independent of its initial angle, 8, and initial orientation. This 
rate of accumulation may be calculated as before, yielding 

X ,  - ( r t /n ) l l s ,  (2.16) 

AX, - ( T t / n S f l ) l l S ,  (2.17) 

with 1 < n < n, = r t / c s ,  and the Fourier transform of the vorticity distribution 
along x = 0 is given by 

(2.18) J 
R, O5k5 1/R 

1/R 5 k 5 (I't)-lls 
, (rt)-l /S 5 k 5 rt/es+l 

rt/es+l 5 k. ( r t / e S ) i  k-l, 
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The first range of k consists of long wavelengths which do not rcsolvc thc sizc of the 
patch. In  the second range the Fourier transform resolves the patch. but none of the 
spiral. Wavelengths in the third (spiral) rangc see an accumulation point of 
discontinuities, and. finally, short wavelengths resolve the spiral structure wm-  
pletely. 

A t  later times with f t  2 R7 the whole patch is wound into a spiral by the central 
vortex (figure 4c ) .  Now discontinuities only occur for nR = r t / R s  < TL < n, = rt/cy 
and the Fouricr transform, given by 

I 4. 

(2.19) 

is shown in figure ~ ( c c ) .  When k is in the spiral range, r t / R S f l  5 k 6 rt/FS+', the 
Fourier transform sees an accurnulation point of discontinuities. I t  only resolves 
those spaced by more than a wavelength, that  is, thosc with nR < n 5 nk E 
(rtks)'i(s+'). These give a sum of uncorrelated terms, while the remaining unresolved 
discontinuities give a contribution of order unity. so that 

Ihl(k)l - k- ' [ (n , -n , , ) :+O(l ) ] .  (2.20) 

Thus at k - ft/RS+l there is a rapid rise in the Fourier transform, as new structure 
is resolved, this is a consequence of the finite size of the patch, and did not occur in 
the example of the semi-infinite patch considered earlier. For rt/R6+' 5 k 5 rt/P1 
we have the slow fall-off in the spiral range. 

ldl(k)l - ( r p s + i )  ~ - I + s / ~ ( s + I )  (2.21) 

These calculations of the Fourier transform are confirmed by numerical results 
(figure 5b.  c) 

Let us introduce weak viscous diffusion of the vortex patch, v + 0. This smooths 
out vorticity on the lengthscale (v t ) ; ,  which increases with time. The effect of 
viscosity is to diffuse away filaments with width less than this viscous lengthscale. 
This modifies the evolution of a vortex patch ; first the innermost filaments diffuse 
away and eventually the vorticity distribution becomes axisymmetrie. Precisely 
when these processes occur depends on how the viscous lengthscale compares with 
the other scales in the problem. I n  Fourier space the picture is simpler; viscous 
diffusion gives rise to an exponential decay of G , ( k )  a t  small scales, k 2 l ( v t ) i .  

We now consider the vortex core causing the advection of the patch; plainly a 
point vortex is physically unrealistic and would dominate the energy spectrum a t  all 
wavelengths. In  our model we shall replace it by a smooth axisymmetric vorticity 
distribution of lengthscale c, for example 

w ( x ,  y) = ( n r / e 2 )  e-(~2+?/2)/2*L (2.22) 

w ~ ( x )  = ( n r I E 2 )  e-x2/2f2, (2.23) 

hl(k) = (I ' /e)(n/2); e-F2k2/2. (2.24) 

The distribution decays exponentially for k 2 lie, but dominates the Fourier 
transform when k 5 l / e ,  since the condition that the vortex patch is weak compared 
with the vortex core is 

r9 R2. (2.25) 

This modifies the forms of dl(k) that  we have calculated; also the viscous diffusion 
of the core will affect the late stages of evolution of the patch. Note that we could 
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take a smooth axisymmetric vortex core of radius larger than O(E), and investigate 
the wind-up of superposed variations in vorticity, here modelled as a vortex 
patch. 

The calculations of dl(k),  without viscosity and excluding the vorticity of the 
central vortex, are valid for l / e  5 k 5 i / (v t ) i .  To include these effects, we need only 
introduce an exponential decay for k l / ( v t ) i  and a distribution such as (2.24) for 
k 5 l /e .  

3. Calculation of the energy spectrum 
In  this section we show how the energy spectrum E(k)  of a vortex with a spiral may 

be calculated from the Fourier transform of the vorticity along lines cutting through 
the vortex; we also vonfirm these calculations by the method of Lundgren (1982). 

We have examined the Fourier transform Cjl(k) of vorticity along a line y = 0, 
passing through the very centre of the spiral. However such a line is unrepresentative 
for the purposes of calculating the energy spectrum; therefore let Cjl(k;yo) be the 
Fourier transform of the vorticity distribution w(x, yo) along the line y = yo. Define 
$(k) by (Saffman 1971) 

then 

w(x,y)w(x+t,y)dxdy = $(k) eiktdk; s s 
Consider a spiral wrapped around some vortex core. Within our policy of neglecting 
constants of order unity, such a structure is isotropic (all directions are 
approximately the same) but not homogeneous (not all points are the same). Using 
isotropy, $(k) may be related to E(k)  (Saffman 1971) by 

with inverse 

$ ( k )  = kr (k2+Z2)iE[(k2+12)i]dZ 
-W 

(3.3) 

(3.4) 

We calculate the energy spectrum from $(k) by (3.4), and find $(k) by integrating 
ldl(k;yo)12 over parallel lines y = yo. I n  the ranges in which kdl(k;yo) is a rapidly 
varying sum of uncorrelated terms, this integration will smooth out the fluctuations, 
leaving us with the mean-square behaviour. 

We need to modify the calculations of $ 2  for the case of a line y = yo intersecting 
the vortex. We shall neglect viscosity and the vorticity of the vortex core; when we 
include these, our results will remain valid in the range l / e  5 k 5 l / ( v t ) i .  Consider, 
for example, the vortex shown in figure 4 ( c )  ; here the whole patch has become wound 
up into a spiral. Take a line y = yo through the vortex; the vorticity distribution 
along the line, w(x, yo), possesses discontinuities at xn, where 

(3 .5)  

with nR < n d min(n,,nu0) and nyo = T t / y i .  We can calculate the mean behaviour 
of (dl(k;y)I2 for a given y by the methods used in $ 2 .  Integrating these results over y 
gives $ ( k ) ,  which dccays as (rt)’’(’+’) kPf(s-l)’(s+l) in the spiral range. rt/RS+l 5 

x, - [ ( ~ ‘ t / n ) ~ ’ ~ - y ~ l i  - (rt/n)i’s, 
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FIGURE 6 The energy spectrum for a spiral with Tt 2 R s ;  the contribution of the vortex core 
and the effect of viscosity are not shown. 

k 5 Tt/es+'. Note that the integration means that $ ( k )  has a different power-law 
dependence on k from l&l(k)12 in this range. 

The energy spectrum of the vortex, E ( k ) ,  is displayed in figure 6. In the spiral range 
the energy has been modified from the t4 characteristic of separated discontinuities 
(Saffman 1971), to a k-4+(s-1)'(s+1) spectrum. We have assumed s > 1 in the above 
calculations; spirals with s < 1 are too loosely coiled to change the spectrum from 
kp4. As s varies from one to infinity, the power law varies from to k3. We expect 
that s x 2 for a realistic model of the wind-up of a weak vortex patch by a strong 
vortex ; when s = 2 as in the point-vortex model of $ 2 ,  this is a k-l1I3 spectrum. We 
have calculated the energy spectrum for times t 2 Rs/T, when the whole patch is 
filamented ; it can also be calculated for earlier times. For Tt 5 R8-l the spiral gives 
a negligible contribution to the energy spectrum, Rk-4 ; only when Tt 2 ReS-' does a 
spiral range emerge. 

We now show how the energy spectrum may be calculated by the methods used in 
Lundgren (1982). We work in polar coordinates ( r ,  8 )  in this section. We consider a 
patch of vorticity w ( r , 8 )  advected in the flow with angular velocity 8(t)  = Q ( r )  = 
T/rS,  caused by some axisymmetric vortex core a t  0 of radius e ,  as in $ 2 .  The 
advection of the patch is given by 

Do i3w aw 
~ = -+Q( r ) -  = 0. 
Dt at a8 

This equation is easily seen to have the general solution 

C f n ( r )  einHPinRt, 
ac 

w ( r ,  8, t )  = 
n=--00 

corresponding to a general initial condition 
co 

o ( r ,  8 , O )  = f n ( r )  einH, 
n=-m 
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The functions f n ( r )  must satisfy f n ( r )  =f?,(r)  to make w real. Also, we include the 
vortex core in f o ( r )  which must vanish for r > R ;  for n + 0, f n ( r )  must vanish for 
r < 6 or r > R. 

The effect of viscosity is to modify (3.6) to 

D~ aw aw - _  - -+Q( r ) -  = vV2w, 
Dt at ae 

with approximate solution (Lundgren 1982) 

(3.9) 

(3.10) 

The non-zero harmonics decay on timescales t ,  5 (R2/vQ2); ,  while the zero harmonic 
can be shown (Lundgren 1982) to decay on the much longer timescale t,, = R 2 / v .  The 
ratio is t,,/t, Ref and we take the Reynolds number, based on the scales of the 
vortex, R e  = R2Q/v ,  to be large. The differential rotation due to the vortex core 
winds up the vorticity into a spiral and increases the vorticity gradients, which 
enhances the decay of non-zero harmonics. This process is precisely analogous to the 
expulsion of the flux of a magnetic field from a region of a two-dimensional fluid with 
closed streamlines (Weiss 1966; Moffatt & Kamkar 1983; Rhines & Young 1983). In 
this case the vector potential of the magnetic field is advected by the fluid flow and 
its diffusion is enhanced by differential rotation in the same way. 

We use the Fourier transform pair: 

w ( r )  = 4(k)  eik"d2k, (3.11) s 
The energy spectrum is given by 

E ( k )  = - l4(k)l"O,, 
2n2 k s 

(3.12) 

(3.13) 

where k = (k,O,) in polar coordinates. Substituting for w ( r )  from (3.10), we obtain 

(3.14) 

(3.15) 

where Z,(k) = l r J n ( k r ) f n ( r )  e-innt e -n2S2'2ut3/3 r dr. (3.16) 

Now f n ( r )  is zero for r < t: and n =b 0 ;  so for wavenumbers k 2 l/s we can use the 
asymptotic expansion for the Bessel functions 

~ ~ ( k z - )  'v (2nky)-$ [( eikr + in+: e--ikr 1 (3.17) 

and approximate the integral (3.16) by the method of stationary phase. The 
exponential is stationary a t  r = r, with, for n > 0,  

rn = (nsII/k) l / ( '+l) .  (3.18) 
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This gives a contribution to Z,(k)  provided E < rn < R so that fn(rn) + 0. If we 
assume that there is such a contribution, and that it dominates the contributions 
from the endpoints, r = E and r = R ,  of the integral (3.16), we obtain 

and 

(3.19) 

(3.20) 

Now I ,  contains contributions from the zero harmonic of the spiral and from the 
vortex core. If we take the core to be a smooth distribution of vorticity of lengthscale 
E ,  then as before this dominates the spectrum for k 5 1/c but may be ignored outside 
this range. For the zero harmonic, the phase is never stationary and the endpoints 
of the integral (3.16) give the dominant contribution, which we are assuming is 
negligible compared with the stationary phase contributions from other harmonics. 

Let us investigate the spectrum in the range 1 / e 5  k 5 l/(vt):, and drop all 
multiplicative constants of order unity (including s ) .  In  this range 

(3.21) 

We need only sum over those n for which fn(rn) is non-zero, that is, for which 
E 5 r ,  5 R or 

n, = keS+’/r t  5 n 5 kR”+’/Tt E nu. (3.22) 

There are three distinct ranges of k: 
( a )  k 5 r t / R S f l .  I n  this range n, 5 nu 5 1, and there are no stationary phase 

contributions to the energy integral. Contributions come from the endpoints of the 
integral, giving rise to an energy spectrum proportional to kP4. 

( b )  rt/RS+I 5 k 5 r t / e S + l .  In  this range n, 5 1 5 nu and so there are stationary 
phase contributions from the harmonics n = 1 to nu. 

( c )  r t / e S + l  5 k. Here 1 5 n, 5 nu and harmonics n = n, to nu give stationary phase 
contributions to the energy spectrum. 

We shall calculate E ( k )  for k in the ranges ( b )  and (c) above. We need to assume 
more about the structure of fn(r) to do this. We are dealing with a vortex patch 
which, a t  t = 0, is without structure on scales much smaller than R. The harmonics 
fn(r) of the vorticity distribution will only depend weakly on r ,  and will vary as 
l l n ,  since the distribution is discontinuous. Thus we shall takef, - l / n  (independent 
of r )  for e < r < R  and n+O. I n  any case, we expect the spectrum to be 
approximately the same for any vortex patch that initially does not possess small- 
scale structure. I n  order to use (3.21) with this form off,(r), we need to check that 
the contribution to E ( k )  from the endpoints of the integrals in (3.16) is negligible 
compared with the stationary phase contribution. This is true when k is in one of the 
ranges ( b )  or ( c )  above and Tt k RS, so that the process of filamentation has reached 
the outer edge of the patch (figure 4c). 

Thus in the range ( b ) ,  with Tt 2 RS,  

(3.23) 

(3.24) 

(3.25) 
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Similarly in the range (c), with rt Rs,  

(3.26) 

(3.27) 

These results agree with those we found earlier (figure 6) by more physical 
arguments. Note that again we have assumed that s > 1 ; a spiral with s < 1 is too 
'weak ' a singularity to give an energy spectrum different from that of a discontinuity, 
E ( k )  - kP4. 

4. Models of two-dimensional turbulence 
What implications do our calculations have for simple physical-space models of 

two-dimensional turbulence ? Can the filamentation of vorticity by coherent vortices 
reconcile Saffman's (1971) kP4 energy spectrum with the kP3 spectrum suggested by 
cascade models? Let us work within the following picture of the later stages of 
decaying two-dimensional turbulence. The vorticity is mostly concentrated in 
coherent vortices which move in the velocity field they induce, and occasionally 
interact. The vortices acquire spirals either during their formation, through vortex 
instabilities, or by assimilating other vortices. 

With this picture in mind, we model the fluid as containing a collection of vortices 
with spirals parameterized by values of r, t ,  s, 6 and R. For scales smaller than the 
spacing between the vortices the energy spectrum is the sum of the spectra of the 
individual vortices. (At larger scales the distribution of the vortices is important. 
Models of the dynamics and interactions of vortices may throw some light on the 
predictions of a k-g energy spectrum in an up-scale energy cascade.) First let us note 
that coherent vortices are likely to acquire spiral structures during their formation. 
from the winding-up of variations in the initial vorticity distribution. If we assume 
these vortices and initial spirals have approximately the same structure and size, 
then the energy spectrum will contain a time-dependent k-4+(s-1) / (s+1)  spiral range, as 
discussed in 442 and 3. 

At later times the vortices will continue to acquire further spirals created through 
vortex instabilities and collisions, and these will come to dominate the initial spirals. 
which will eventually diffuse away. This creation of further spirals around the 
coherent vortices suggests that  the simplest model of two-dimensional turbulence we 
can construct is one in which new identical spirals are continually created and are 
destroyed after a time t,. The only mechanism that can destroy the fine scales of a 
spiral is diffusion; thus we are led to assume that after a time t ,  an old spiral has 
already diffused into an axisymmetric distribution, and the vortex starts to develop 
a new spiral through a collision with another vortex. We also take t ,  short enough 
that the spirals do have a significant effect on the energy spectrum; so t ,  must 
satisfy 

The energy spectrum, then, is proportional to that of a single vortex averaged over 
its lifetime t,, and is shown in figure 7 .  We see that we have a range with a kP4 
spectrum, and a range with a decay of k-2 ,  which is the time-averaged effect of the 
spiral range with its promising k-4+(s-1)i(s+1) spectrum. This averaged kP2 energy 
spectrum falls off very slowly for an inertial range, and makes this a rather unlikely 
model of decaying two-dimensional turbulence. 
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FIGURE 7 .  Thc cnorgy spectrum of a single vortex averaged over its lifetime. t , .  Visrosity is 
included, bu t  not the contribution from the vortex core. 

We could, of course, obtain any desired spectrum by making arbitrary assumptions 
about the distribution of vortices with different values of r, s,  F ,  R and lifetime t,. 
However, the main problem with our model is the assumption that spirals survive 
until they are destroyed by viscosity. Consider the inviscid limit; as v + O ,  the time 
taken for the spirals to diffuse away tends to infinity but the large-scale dynamics, 
whirh comprise the motion and interactions of vortices, will be independent of 
viscosity in this limit. Thus for small viscosity, we expect that a spiral will be 
disrupted by a close encounter with another vortex, long before it has diffused away. 
The encounter will not destroy the fine structure of the vorticity, which will be 
incorporated as fine filaments within vorticity filaments of a new spiral (figure 8). 

I t  is worth noting the relationship between our model and Lundgren's (1982) 
strained spiral vortex model of three-dimensional turbulence. We may obtain one of 
Lundgrt3n's three-dimensional vortices by extending our two-dimensional vorticity 
distribution a distance Lo $- R into the z-direction (in cylindrical polar coordinates), 
and imposing, in addition to the process of winding up, a uniform strain a along the 
axis of the vortex. Lundgren identifies this axial strain, due to the other vortices in 
the flow, by assuming that the rate of dissipation of energy in the fluid, &, satisfies 
6 - v d .  The energy spectrum of the strained vortex, E,(k ,  t ) ,  is related to that of the 
original, unstrained two-dimensional vortex by : 

E,(lc, t )  = L"SQqlc/St, P ) ,  (4.2) 

where 8 ( t )  = eat, P ( t )  = h'(t') dt'. l (4.3) 

Lundgren assumes that in a turbulent fluid, vortices are continually created with the 
same basic spiral structure, are stretched, wind up, and eventually recombine to 
form new short vortices. The energy spectrum of the fluid is obtained by averaging 
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FIGURE 8. A segment of a spiral containing filaments within filaments. The vorticity is unity 
within the shaded regions and zero elsewhere. 

the energy spectrum of a single spiral vortex over a typical lifetime and gives a range 
with the Kolmogorov k-g spectrum down to the Kolmogorov scale. The model 
assumes that diffusion destroys the spirals ; this is reasonable in three-dimensional 
turbulence, because as v --f 0, a + co (since it is likely that d remains finite in this 
limit (Batchelor 1969)), and the spirals evolve and diffuse away faster. 

4.1.. Fractals and self-similar spirals 

In  t!he last section we noted that spirals are unlikely to be destroyed by diffusion in 
the limit of low viscosity, and instead are likely to become incorporated as fine 
structure within new spirals, created by vortex collisions and instabilities. This 
suggests that we construct a new model in which spiral filaments may themselves 
have a self-similar filamented structure (figure 8). Of course the details of such a self- 
similar spiral in the fluid will depend on the history of the vortex, its instabilities and 
interactions with other vortices and we shall not attempt detailed calculations of the 
corresponding energy spectrum. In this rather speculative section, we relate our 
earlier calculations to certain results on fractals, and comment on the case of self- 
similar spirals. 

The energy spectrum of an isotropic two-dimensional flow may be related to a 
vorticity correlation function by 

X ( r )  = (w(x+r)-w(x))2d2x = 4 k 2 E ( k )  (l-J,(kr))dk, s s (4.4) 
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\\here r = Irl. Now suppose the vorticity is concentrated in a vortex patch 9, 
whose bounclary has a fractal dimension d ,  measured over some range of scales 
r /  5 r 5 ru.  Then Ball & Kingdon (1986) have argued that 

S ( r )  - rZpd (4.5) 

in this same range of r .  (Mandelbrot 1977 and Hentschcl & Procaccia 1984 have given 
another rrlation, valid under different circ*umstances, as discussed in Ball & Kingdon 
1986.) Prom (4.4), the corresponding energy spectrum for l /r,  5 k 5 l / r ,  is 

E ( k )  N k - 5 + d .  (4.6) 

Since the dimcwsion satisfies 1 < d < 2 ,  the spectrum is kp4 when the boundary has 
no small-scalc structure. in agreement with Saffman (1971), and can approach, but 
not attain, k-". This is in agreement with our earlier calculations, and an argument 
of Frisch (1956) that a k3 spectrum cannot arise from structures that are too sparse, 
such as fractals and spirals. 

Consider now the spirals of $ 2 ,  and take 8 = 0 for simplicity, so that  they possess 
structure on indefinitely small scales. L4 suitable measure of the dimension of the 
boundary of such a spiral is its Kolmogorov capacity (see Farmer, Ott & Yorke 
1983), which is easily estimated to be d = l+(s - l ) / ( s+l ) .  (The Hausdorff 
dimension, which is often employed, is unity here.) Our calculations of the cnergy 
spectrum confirm the relationship (4.6), and support the work of Ball & Kingdon 
(1986), provided that thc capacity is taken as the appropriate measure of fractal 
dimension. 

Now let us return to the problem of self-similar spirals; if the decaying turbulence 
is modelled by a collection of vortex patches whose boundaries have dimension d over 
a given range of scalcs, then the energy spectrum of the flow will fall off as k - 5 f d  in 
this rangc. Again the accwmulation of approximate discontinuities in the vorticity 
distribution modifies the spectrum from kp4 to a shallower spectrum. Note that the 
cnergy spectrum approaches k3 when the dimension of the boundary approaches 
two, that is, when the number of filaments at each level of the self-similar structure 
(figure 8) is large. Physically this is when collisions are infrequent, since each collision 
corresponds to a level of thc self-similar structure. and the number of spiral coils at 
eavh level increases with thc time between collisions. In decaying two-dimensional 
turbulence, coherent vortices tend to combine. so the number of vortices in the flow 
dccrcases with time, and collisions become more and more infrequent. This suggests 
that the energy spectrum of the flow may tend to kp3 in the limit of long times (before 
very long times when the viscosity has destroyed most of the vortieity, and the flow 
is dominated by viscous decay). However this behaviour has not been seen in 
numerical simulations (B. Legras, personal communication) and so these ideas 
remain somewhat speculative. 

5. Conclusions and discussion 
)Ye have shown that a spiral. formed by the passive advection of a weak vortex 

patch by a strong vortex, has an energy spectrum which falls off as k-y in the spiral 
range. Generalizing the velocity field, to perhaps include some average effect of the 
vorticity in the spiral, gives an energy spectrum with a power law lying between 
kp3 and kp4 in the spiral range. UTe must sum the energy spectra of all the vortices 
and spirals in a decaying two-dimensional flow to obtain its energy spectrum. Now 
suppose all the spirals d e  created with approximately the same structure 
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simultaneously, for example, when the vortices first emerge in the flow. Then the 
energy spectrum of the fluid will also have a fall-off of between kP3 and kP4 in a time- 
dependent spiral range. At later times there will be a continual creation of spirals by 
vortex collisions and instabilities. In this case it is necessary to average the 
instantaneous energy spectrum of a typical spiral over its lifetime, to find the energy 
spectrum of the flow. In  Lundgren’s (1982) strained spiral model of quasi-equilibrium 
three-dimensional turbulence, the axial stretching of the vorticFs accelerates the 
winding-up process, and the time average gives the Kolmogorov k-3 energy spectrum. 
In a two-dimensional flow, the corresponding time average gives a k-2 spectrum, a t  
odds with theory and numerical results. However this assumes that the spirals are 
destroyed by diffusion, which is unlikely in two-dimensional turbulence in the limit 
of low viscosity. In  practice, a spiral will be disrupted by interactions with other 
vortices, long before it diffuses away, and will acquire a self-similar ‘filaments within 
filaments’ structure. Some results on fractals (which have support from our 
calculations) suggest that  for such a self-similar spiral the instantaneous energy 
spectrum also has a fall-off lying between kP3 and kP4, the slope being related to the 
fractal dimension of the boundary of the spiral. 

In  conclusion, our models indicate that the accumulation of approximate 
discontinuities in vorticity gives an instantaneous energy spectrum shallower than 
Saffman’s (1971) kP4 spectrum, but steeper than the k-3 suggested by models of an 
enstrophy cascade. However the models are essentially kinematic ; the problem 
remains of constructing a dynamical picture of two-dimensional turbulence that 
would incorporate the distribution and time evolution of characteristic structures, 
such as self-similar spirals, in the flow field. 

In  our analysis we have assumed that the vorticity is passively advected by the 
flow of a strong vortex (except €or the minor generalization of s + 2) ; this suggests 
that our calculations might be more realistic for the advection of a truly passive 
scalar in a turbulent two-dimensional flow. However a passive scalar has no 
dynamical effects, and no tendency to form vortices. Although a patch of passive 
scalar close to a vortex will form a spiral, the vortices may only cover a small area 
of the fluid and in between the vortices the scalar will be stretched by the vortex 
motion. It is not clear which of these two processes is more important in the cascade 
of the scalar to small scales (see Babiano et al. 1987). In  defence of our treatment of 
vorticity as passively advected by vortices, we may make several points. A filament 
of vorticity in the fluid between the vortices will be unstable and will tend to roll up 
and form vortices, if the flow field due to the vortices does not stretch it sufficiently 
quickly to  suppress this instability. However a filament of a spiral will be stable 
provided that the shear (or differential rotation) of the nearby vortex core is 
sufficiently strong (T. G. Shepherd, D. G. Dritschel, personal communications) ; this 
is a consequence of Fjortoft’s (1950) stability theorem (see also Arnol’d 1965). Thus 
we may be justified in considering coherent vortices passively advecting filaments of 
vorticity, whereas the important processes for the advection of a truly passive scalar 
are less clear. 

It is interesting to compare this picture with the results of Aref (1984) for ‘stirring 
by chaotic advection ’, Aref considers passive advection by a time-periodic, two- 
dimensional flow in a disk driven by two point vortices which are switched on and 
off. An analytical integration of the motion of an advected particle over one period 
of the flow gives a ‘return map’, which, in general, possesses fixed points. Over many 
periods of the flow, a patch of scalar becomes distended into ‘whorls’ about the 
elliptic fixed points, and ‘tendrils ’ about the hyperbolic fixed points. 
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In our picture of a two-dimensional turbulent flow, a passive scalar is stirred by 
thc motion of coherent, extended vortices. This motion is aperiodic in general, and 
cwuiot be represented by iterations of a single return map; so the whorl and tendril 
structures associated with the fixcd points of such maps tlo not occur. Although a t  
any instant there are, in general, stagnation points of the Aow, these wander a t  
random (on the tiincscales of the vortex motion), and are not associated with 
particular blobs of fluid. In turbulent two-dimensional flows, the closest thing to a 
whorl is a spiral associated with a vortex; however there i s  no obvious analogue to 
a tendril. 

Thus there are important differences between stirring by a turbulent two- 
dimensional flow, and stirring by the periodic flows considered by Aref (1984), which, 
although non-turbulent (in thc Eulerian sense), may stir a scalar more cfficicntly. 
The singular velocity field generated by point vortices may mix a scalar better than 
the non-singular velocity field of an extended vortex. Also switching $xed point 
vortices on and off gives very effective stirring ; when a vortex has stirred up a nearby 
patch of scalar, and is switched off, the flow advects the stirred scalar away, replacing 
it by another patch of scalar, to be stirred when the vortex is next switched on. 
However an extended vortex in a turbulent flow moves with the fluid and stirs up 
the same patch of scalar, until it is disrupted by a collision, or close encounter with 
another vortex. 
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